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1. Introduction
An Atwood’s machine shows the relationship between forces and acceleration. It consists of two

weights connected by a string. By changing the mass of these weights, the acceleration can be

measured. Analyzing the measured accelerations and weights used allows for an experimental

measurement of gravity.

2. Theory
The forces in an Atwoods machine can be modeled by drawing a free body diagram for each

weight (𝑚1 and 𝑚2).

𝐹𝐺
𝑔,𝑚1

𝐹𝑇
𝑆,𝑚1

𝑎

𝐹𝐺
𝑔,𝑚2

𝐹𝑇
𝑆,𝑚2

𝑎

Figure 1: The free body diagrams for 𝑚1 and 𝑚2 where 𝑚2 > 𝑚1

The sum of forces in the y direction for each weight can be found by adding the two forces in

each diagram.

∑ 𝐹𝑦,𝑚1
= 𝐹𝑇

𝑆,𝑚1
+ 𝐹𝐺

𝑔,𝑚1 (2.1)

∑ 𝐹𝑦,𝑚2
= 𝐹𝑇

𝑆,𝑚2
+ 𝐹𝐺

𝑔,𝑚2 (2.2)

Taking the downward direction to be positive, 𝐹𝐺
𝑔,𝑚1

 and 𝐹𝐺
𝑔,𝑚2

 can be found with the equation:

𝐹 = 𝑚𝑎 (2.3)

𝐹𝐺
𝑔,𝑚1

= 𝑚1𝑔 (2.4)

𝐹𝐺
𝑔,𝑚2

= 𝑚2𝑔 (2.5)

2



Since the string is not stretching, 𝑚1 and 𝑚2 are each exerting equal forces on the string

𝐹𝑇
𝑚1,𝑆 = 𝐹𝑇

𝑚2,𝑆 = 𝐹𝑇
𝑚,𝑆 (2.6)

Since the tension force acting on the weight and the force that the weight exerts on the string is

a force pair, the forces by the string acting on the weights can be found:

𝐹𝑇
𝑆,𝑚 = 𝐹𝑇

𝑚,𝑆 (2.7)

Using the values found in Equation (2.4), Equation (2.5), Equation (2.7), the equations can be

simplified to:

∑ 𝐹𝑦,𝑚1
= 𝐹𝑇

𝑆,𝑚 + 𝑚1𝑔 (2.8)

∑ 𝐹𝑦,𝑚2
= 𝐹𝑇

𝑆,𝑚 + 𝑚2𝑔 (2.9)

Using ∑ 𝐹𝑦 = 𝑚𝑎𝑦, the forces can now be related to the weights’ accelerations

𝑚1𝑎𝑦,𝑚1
= 𝐹𝑇

𝑆 + 𝑚1𝑔 (2.10)

𝑚2𝑎𝑦,𝑚2
= 𝐹𝑇

𝑆 + 𝑚2𝑔 (2.11)

Given that the string is still not stretching and that the weights’ masses are not the same, the

acceleration of the two weights should be equal in magnitude but opposite in direction

−𝑚1𝑎𝑦 = 𝐹𝑇
𝑆 + 𝑚1𝑔 (2.12)

𝑚2𝑎𝑦 = 𝐹𝑇
𝑆 + 𝑚2𝑔 (2.13)

Equation (2.12) can now be solved for 𝐹𝑇  and can be plugged into Equation (2.13)

𝐹𝑇 = −𝑚1𝑎𝑦 − 𝑚1𝑔 (2.14)

−𝑚1𝑎𝑦 = 𝑚2𝑔 + (−𝑚1𝑎𝑦 − 𝑚1𝑔) (2.15)

𝑚2𝑎𝑦 = 𝑚2𝑔 − 𝑚1𝑎𝑦 − 𝑚1𝑔 (2.16)
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Isolating 𝑎 then gives an equation for acceleration in terms of 𝑚1 and 𝑚2

𝑚1𝑎𝑦 + 𝑚2𝑎𝑦 = 𝑚2𝑔 − 𝑚1𝑔 (2.17)

𝑎𝑦 =
𝑚2𝑔 − 𝑚1𝑔
𝑚2 + 𝑚1

(2.18)

Pulling 𝑔 out of the right side of the equation gives

𝑎𝑦 = 𝑔(
𝑚2 − 𝑚1
𝑚1 + 𝑚2

) (2.19)

Using 𝑀  to represent 𝑚2−𝑚1
𝑚1+𝑚2

, the equation used for this procedure is found:

𝑎𝑦 = 𝑔𝑀 (2.20)

This equation will be used in the procedure using 𝑀  as the independent variable, and 𝑎 as the

dependent variable to represent the theoretical line. This equation can be used to find the accu­

racy of the results.

Figure 2: A sketch of the theoretical line for 𝑎(𝑀)
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3. Procedure
An Atwood Machine was created by

suspending  a  string  from a wheel  at­

tached  to  a  lab  support. A  photogate

was set up so that it was blocked mul­

tiple times as the wheel spun. On each

end  of  the  string,  weights  were  at­

tached of varying masses.

Figure 3: A model of the Atwood machine used in the pro­
cedure

The experiment consisted of 8 trials. The first 6 trials were calculated with varying weights

for 𝑚1 and 𝑚2 = 𝑚1 + 0.005kg The value of 𝑀  was calculated for each trial The weight was

held up until the PASCO Capstone software was recording and then released. The 𝑎 was mea­

sured using the photogate until 𝑚1 neared the top of the machine. Care was taken to make sure

that the weight was dropping the same way for each trial.

The last 2 trials used a different change in weight between 𝑚1 and 𝑚2 this was done to

try to decrease the error from the first 6 trials by calculating with values of 𝑀  greater than in

the first trials. Care was taken to make sure that the no damage was done to any equipment due

to the increased acceleration. The acceleration data was collected from the PASCO Capstone

software and written down for later use. 𝑀  was then calculated from the masses of the weights

used for the trial.
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Trial 𝑚1 kg 𝑚2 kg 𝑀  𝑚2−𝑚1
𝑚1+𝑚2

𝑎 m · s−2

1 0.055 0.060 0.043 0.380

2 0.060 0.065 0.040 0.354

3 0.065 0.070 0.037 0.323

4 0.070 0.075 0.034 0.310

5 0.075 0.080 0.032 0.303

6 0.080 0.085 0.030 0.279

7 0.065 0.075 0.071 0.649

8 0.080 0.095 0.086 0.780

Table 1: A table containing all of the values collected during the experiment

Figure 4: A graphical representation of the measured values, the line of best fit of for the mea­
sured values from Table 1, and the theoretical line
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4. Data Analysis
Equation (4.20) shows the function should yield a linear function with slope 𝑔, an experimental

value for 𝑔 can be found by finding the line of best fit of the function.

𝑔experimental = 9.13m · s−2 (4.1)

Comparing the calculated 𝑔 to the accepted 𝑔 = 9.81m · s−2 the percent deviation can be cal­

culated

% deviation = |
𝑇 − 𝐸

𝑇
| ⋅ 100 (4.2)

% deviation = |
9.81 − 9.13

9.81
| ⋅ 100 (4.3)

% deviation = 6.9% (4.4)

This error  is relatively high but  is still a reasonable result. Two causes of error are air resis­

tance and friction. Both are systematic errors that cause the calculated 𝑔 to be lower than the

theoretical 𝑔. The systematic error can be seen in the graph by the decreased slope compared

to the theoretical line. However, the decreased slope could also be caused by the random er­

ror. Both errors are very difficult to remove completely. The best way to improve these errors

would be to account for them in the calculations. However, this would increase the complexity

of the procedure exponentially as accounting for it would require many more measurements to

find the friction and air resistance. Another possible method would be to use more specialized

equipment. The error due to air resistance could be almost completely removed by running the

experiment in a vacuum. The error due to friction could be reduced by using a more efficient

bearing to allow the wheel to turn.
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Another  likely dominant cause of error  is measurement  inaccuracy. The photogate was

reading very inconsistent values and trials often had to be rerun before they yielded a usable

result. The measurement inaccuracy is mostly random error. If there is systematic error caused

by it, there are not enough trials to know in which direction it skewed the results. This error

is also hard to remove completely, but could easily be improved by running more trials. This

would decrease the random error as running more trials will bring the result closer to the aver­

age. Another simple but expensive way to decrease this error would be to use better equipment.

5. Conclusion
An Atwood Machine can be a good method  for determining acceleration due  to gravity. Al­

though experimental errors caused a rather large error of 6.9%, it is still a reasonable approxi­

mation. The results could likely be improved by running more trials to decrease the influence

of random error. Other methods could be used to decrease error but would likely lead to a much

higher complexity, the need for new measurement equipment, or both.
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